
NOTES 2661 

Is There Any Universal Expression for  
Representing the Steady-State Flow Curves of Polymers? 

A master curve representation of the steady-state flow curve has been rather in com- 
Sabiaz provided a particular mon use since Bueche and Harding devised the method.’ 

mathematical expression for the master curve: 

where q and + are the observed viscosity and shear rate, respectively. 
and b = ‘/a for linear polyethylene. 

He assigned a = 2 
This equation reduces to 

q = qoat+-*O 

and to 

q/qo = ( , i / + 0 F a b  at 4 >> 90 

with q/qo << a and +/+o >> 1. The former limit corresponds to the low-shear Newton- 
ian flow and the latter limit, to the high-shear “power law flow.” The parameter $0 is 
the intersection of two lines, log (q /qo)  = 0 and log (q/qo)  = -ab log (+/YO). 

The master curve method assumes the presence of a universal curve; it is a two-param- 
eter representation, with qo and +a as the parameters. Sabia’s equation further defines 
a smoothly shaped curve traversing between the two limits. The slope of the high-shear 
limit is defined as a constant, -ab = - 2/3. 

Later, evidence was found to nullify the master curve c o n ~ e p t . ~ . ~  In order to repre- 
sent each differently shaped curve for each sample, therefore, the following modification 
was made of Sabia’s treatment. In addition to the two adjustable parameters qo and 
YO, a was also made to be adjustable. However, t,he high-shear limiting slope, ab, was 
kept constant, i.e., 2/3 for linear polyethylene and 3/4 for polypropylene.8*4 The variable 
a provided a family of an infinite number of curves, thus enabling representation of 
most of the observed curves. This method may be called a three-parameter representa- 
tion. However, there were exceptions, which required the variable ab. 

At this point, a question may be asked whether there is a universal expression for 
representing the steady-state flow curves. If there is, how many adjustable parameters 
are required, three or four? 

In Figures 1, 2, and 3, the flow curves of linear polyethylenes are shown, where it is 
very difficult to judge whether the three-parameter or four-parameter representation 
gives a better fit. A set of parameters given for curve 1 corresponds to the three-param- 
eter representation, i.e., ab = 2/3; and another set for curve 2 corresponds to the four- 
parameter representation. Noteworthy is the fact that two differently shaped curves 
can represent the observed data almost equally well. When a molecular theory of flow 
based on a model is tested against observed data, the first requirement is that the theoretr 
ical curve fit the data within the error of measurements. Although this is the necessary 
requirement, it  does not seem to be a satisfactory condition to demonstrate the validity of 
the assumed molecular model. There is a possibility that another theory based on a 
different model may result in the same curve or even a different curve and that it repre- 
sents the data equally well. 

In the three flow curves of linear polyethylenes shown in Figure 4, the high-shear limitr 
ing slope ab is not 2/a. Combining the examples of Figures 1-4, it is obvious that at  least 
four independently adjustable parameters are needed for the “universal representation” 
of the flow curves. 

The cases presented in Figure 5, again with linear polyethylenes, show the importance 
of extending the measurements to sufficiently high shear rates. This was done by using 
the Instron capillary rheometer. Quite different results may be obtained in curve fitting 
when the Instron data are included. 
@ 1970 by John Wiley & Sons, Inc. 
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Thus far, all examples discussed are flow curves having a smoothly changing slope. 
On the other hand, there are examples which do not follow the pattern. They are poly- 
mers containing small crosslinked particlesa.6 and a blend of narrow fractions whose 
molecular weights are sufficiently In the flow curves of the above examples, 
inflection points are found. It appears that no universal expression can be found for 
curve-fitting of all these examples. It is this writer’s opinion that there is no universal 
expression for representing the steady-state flow curves of all polymeric systems. Just as 
there are infinite variations of composition, there will be infinite variations in the shapes 
of the flow curves. 
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